ЁЯУШ Class 12 Maths – Chapter 3: Matrices
ЁЯзо Introduction and Basic Concepts (with Examples)
ЁЯФ╖ What is a Matrix?
A matrix is a rectangular arrangement of numbers in rows and columns.
Example:
\( \begin{bmatrix} 2 & 4 & 6 \\ 1 & 3 & 5 \end{bmatrix} \) — Order = 2 × 3
\( \begin{bmatrix} 2 & 4 & 6 \\ 1 & 3 & 5 \end{bmatrix} \) — Order = 2 × 3
ЁЯФ╢ Order of a Matrix
If a matrix has \( m \) rows and \( n \) columns, then the order is written as \( m \times n \).
\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \)
Order = 3 × 2
Order = 3 × 2
ЁЯФ╖ Types of Matrices
- Column Matrix: \( \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix} \)
- Row Matrix: \( \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \)
- Square Matrix: \( \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)
- Diagonal Matrix: \( \begin{bmatrix} 4 & 0 \\ 0 & 7 \end{bmatrix} \)
- Scalar Matrix: \( \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} \)
- Identity Matrix: \( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
- Zero Matrix: \( \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \)
ЁЯФ╢ Equal Matrices
Matrices are equal if they have the same order and identical corresponding elements.
\( A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \),
\( B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \) ⇒ \( A = B \)
ЁЯФ╖ Operations on Matrices
Addition:
\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix},\
B = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \)
\( A + B = \begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix} \)
\( A + B = \begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix} \)
Scalar Multiplication:
\( 3 \cdot A = 3 \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix} \)
Subtraction:
\( A = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix},\
B = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} \)
\( A - B = \begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix} \)
\( A - B = \begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix} \)
Matrix Multiplication:
\( A = \begin{bmatrix} 1 & 2 \end{bmatrix},\
B = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \)
\( AB = \begin{bmatrix} 11 \end{bmatrix} \)
\( AB = \begin{bmatrix} 11 \end{bmatrix} \)
ЁЯФ╖ Transpose of a Matrix
The transpose of a matrix \( A \), denoted \( A^T \), is formed by interchanging its rows with columns.
\( A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \)
\( A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \)
\( A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \)
ЁЯФ╢ Special Matrices
Symmetric Matrix:
A matrix is symmetric if \( A^T = A \)
\( A = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix} \) ✔️
\( A = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix} \) ✔️
Skew-Symmetric Matrix:
A matrix is skew-symmetric if \( A^T = -A \)
\( A = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} \) ✔️
\( A = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} \) ✔️