CLASS → 12th [MATHS]
MID-TERM EXAMINATION (2023–24)
CLASS: XII
SUBJECT: MATHEMATICS (041)
Time Allowed: 3 hours
Maximum Marks: 80
समय: 3 घंटे
अधिकतम अंक: 80
सामान्य निर्देश:
- 1. इस प्रश्न पत्र में 38 प्रश्न हैं। सभी प्रश्न अनिवार्य हैं।
- 2. एक कुल 5 खंडों में विभाजित किया गया है जैसे – क, ख, ग, घ और ड।
- 3. खंड क में प्रश्न आंक 1 से 18 तक एक विकल्पीय और प्रश्न आंक 19 और 20 आधारण-कारण चार के हैं।
- 4. खंड ख में प्रश्न आंक 21 से 25 तक अति लघु उत्तरीय प्रश्न हैं जिने 2 अंक मिले हैं।
- 5. खंड ग में प्रश्न आंक 26 से 31 तक लघु उत्तरीय प्रश्न हैं जिने 3 अंक मिले हैं।
- 6. खंड घ में प्रश्न आंक 32 से 35 तक दीर्घ उत्तरीय प्रश्न हैं जिने 5 अंक मिले हैं।
- 7. खंड ड में प्रश्न आंक 36 से 38 तक स्थिति आधारित प्रश्न हैं, जो 4 अंक के हैं।
- 8. कुल पत्र में कौन्छ विकल्प नहीं दी गई है। तथापि, खंड ख के 2, खंड ग के 3, खंड घ के 2 और खंड ड के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान किया गया है।
- 9. कैलक्युलेटर का उपयोग वर्जित है।
GENERAL INSTRUCTIONS:
- 1. This question paper contains 38 questions. All questions are compulsory.
- 2. This question paper is divided into five sections – A, B, C, D and E.
- 3. Section A: Q1 to Q18 are MCQs, Q19 & Q20 are Assertion-Reason based (1 mark each).
- 4. Section B: Q21 to Q25 are Very Short Answer (VSA) type questions (2 marks each).
- 5. Section C: Q26 to Q31 are Short Answer (SA) type questions (3 marks each).
- 6. Section D: Q32 to Q35 are Long Answer (LA) type questions (5 marks each).
- 7. Section E: Q36 to Q38 are Case Study based questions (4 marks each).
- 8. No overall choice. Internal choice in 2 Qs in B, 3 Qs in C, 2 Qs in D, 2 Qs in E.
- 9. Use of calculator is not allowed.
SECTION-A
This section comprises multiple choice questions (MCQs) of 1 mark each.
1. If y = sin²(x²), then dy/dx is:
2. The side of a square increases at the rate of 4 cm per second. Find the rate at which the area of the square increases when the side is 5 cm.
3. Evaluate: ∫ x·sin(2x) dx
4. Let A = {1, 2, 3} and R = {(1,1), (2,3), (1,2)}; which ordered pairs among the following can be added in relation R to make it reflexive and transitive?
5. Minimum value of f(x) = |x + 2| − 1, x ∈ ℝ, is:
6. ∫ (2 − 3·sin(x)) / cos²(x) dx is equal to:
7. cos⁻¹(½) + 2·sin⁻¹(½) + 4·tan⁻¹(1/√3) is equal to:
8. Order and degree of the differential equation (d²y/dx²)³ = 1 + (dy/dx)⁴:
9. If 3x² + 8xy + 5y² = 1, then dy/dx equals:
10. Value of cot[cos⁻¹(7/25)] is:
11. ∫ dx / √(16 − 9x²) is equal to:
12. If A = [ [2, −7], [9, −5] ], then (adj A)′ is:
13. If f(x) = { 3x − 8, if x ≤ 5 2k, if x > 5 } is continuous, then the value of k is:
14. ∫ (x⁴ + 1)/(x² + 1) dx is equal to:
15. If matrix A =
[ 4 3 1 ]
[ -5 7 2 ]
is expressed as the sum of a symmetric matrix B and a skew-symmetric matrix C, then matrix C is equal to:
16. Derivative of sin(x) with respect to cos(x) is:
17. If
then AB is equal to:
18. If y = log [ tan(π/4 + x/2) ], then dy/dx is:
In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer from the following:
19.
Assertion (A): The principal value of cot⁻¹(√3) is π/6 — True
Reason (R): Domain of cot⁻¹x is ℝ = (−1, 1) — False
Correct option: (c) A is true but R is false ✔️
20.
Assertion (A): Let A = {−1, 1, 2, 3} and B = {1, 4, 9}, where f: A → B given by f(x) = x². Then f is a many-one function. — False
Reason (R): If x₁ ≠ x₂ ⇒ f(x₁) ≠ f(x₂), for every x₁, x₂ ∈ domain, then f is one-one, else many-one. — True
Correct option: (d) A is false but R is true ✔️
This section comprises very short answer (VSA) type questions of 2 marks each.
21. Using integration, find the area of the region enclosed by the parabola y² = 4x, and vertical lines x = 2 and x = 4 in the first quadrant.
22. If x = a·cos(θ) + b·sin(θ) and y = a·sin(θ) − b·cos(θ), then prove:
y²·(d²y/dx²) − x·(dy/dx) + y = 0
OR
Differentiate sin(xˣ) with respect to x.
OR
Find the area of the region bounded by the curve y = cos(x) between x = 0 and x = π using integration.
SECTION–C (3 Marks Each)
[ -4 -11 ]
OR
If
[ tan(α/2) 0 ]
[ sin(α) cos(α) ]
SECTION–C (3 Marks Each)
Write its domain and range.
OR
Solve:
OR
Find a and b such that is continuous at x = 4.
SECTION–D (5 Marks Each)
OR
then find the product XY.
is:
(a) strictly increasing
(b) strictly decreasing
OR
Find intervals in which the function , for
is:
(a) increasing
(b) decreasing
SECTION–E: Case Study Based Questions (4 Marks Each)
Aman purchased 4 pens of variety A, 3 pens of variety B and 2 pens of variety C for ₹60.
Sunil purchased 6 pens of variety A, 2 pens of variety B and 3 pens of variety C for ₹70.
Based on the above information, answer the following:
- Represent the above situation as algebraic equations. [1 mark]
- Using matrices, express the equations in the form AX = B. [1 mark]
-
Using matrix method, find:
- Sum of the costs of pens of variety A and B. OR
- Difference of the costs of pens of variety B and C. [2 marks]
Based on this information:
- Draw a suitable figure. Find the point of intersection of the circle and line in the first quadrant. [2 marks]
- Using integration, find the area enclosed by the circle, line, and x-axis in the first quadrant. [2 marks]
He cut squares of side x cm from each corner and folded up the flaps to form an open box.
Application-Based Questions: Pen-Stand Problem
Answer the following:
[1 mark]
[1 mark]
[2 marks]
Find the total surface area of the outer surface of the largest such pen-stand.
[2 marks]
📚 Class-Wise Study Study Material
Class | Notes Link |
---|---|
Class 9 | View Study Material |
Class 10 | View Study Material |
Class 11 | View Study Material |
Class 12 | View Study Material |